纳米陶瓷:纳米陶瓷

纳米陶瓷简介

利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。它克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响,为代替工程陶瓷的应用开拓了新领域。

纳米陶瓷材料的特性

1、超塑性:

陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变,而纳米二氧化锆陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

2、扩散与烧结性能:

由于纳米陶瓷材料存在着大量的界面,这些界面为原子提供了短程扩散途径,与单晶材料相比,纳米陶瓷材料具有较高的扩散率,增强扩散能力的同时又使纳米陶瓷材料的烧结温度大为降低,添加10%的纳米##二铝(VK-L30)或纳米二氧化锆(VK-R30Y3)可使普通陶瓷降低烧结温度50-100C。

3、力学性能:

不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4-5倍,在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。

纳米陶瓷材料的应用

1、防护材料:

普通陶瓷在被用作防护材料时,由于其韧性差,受到弹丸撞击后容易在撞击区出现显微破坏、垮晶、界面破坏、裂纹扩展等一系列破坏过程,从而降低了陶瓷材料的抗弹性能。纳米陶瓷耐冲击的性能,可有效提高主战坦克复合装甲的抗弹能力,增强速射武器陶瓷衬管的抗烧蚀性和抗冲击性;由防弹陶瓷外层和碳纳米管复合材料作衬底,可制成坚硬如钢的防弹背心:在高射武器方面如火炮、鱼雷等,纳米陶瓷可提高其抗烧结冲击能力,延长使用寿命。

2、高温材料:

纳米陶瓷高耐热性、良好的高温抗氧化性、低密度、高断裂韧性、抗腐蚀性和耐磨性,对提高航空发动机的涡轮前温度,进而提高发动机的推重比和降低燃料消耗具有重要作用,有望成为舰艇、军用涡轮发动机高温部件的理想材料,以提高发动机效率、可靠性。

3、人工器官的制造、临床应用:

随着纳米材料研究的深入,纳米生物陶瓷材料的优势将逐步显现,其强度、韧性、硬度以及生物相容性都有显著提高。例如当##磷灰石粉末中添加10%-70%的纳米二氧化锆(VK-R30Y330nm纯度99.99%)粉末时,材料经l300-1350C热压烧结,其强度和韧性随烧结温度的提高而增加,纳米二氧化锆增强##磷灰石复合材料比纯##磷灰石陶瓷的抗弯强度提高1.6倍、断裂韧性提高2倍、抗压强度提高1.4倍,与生物硬组织的性能相当。

4、电学性能的应用:

压电陶瓷广泛用于电子技术、激光技术、通讯、生物、医学、导航、自动控制、精密加工、传感技术、计量检测、超声和水声、引燃引爆等军用、商用及民用领域。

相关推荐

相关文章